leds

martes, 15 de octubre de 2013

¿Cómo funciona un LED?

  • LED =“Diodo emisor de luz” (Light Emitting Diode)
  • Luz  producida por un semiconductor (Diodo) dentro de una cápsula que actúa como bombillo cuando la corriente pasa a través de las terminales.
  • Necesita un mínimo voltaje de 3 Volts
  • Colores: blanco, azul, rojo, verde & ámbar
7 Pero ¿qué es un LED?
Led es un acrónimo para “Diodo emisor de luz” (Light Emiting Diode)
Su luz es producida por un semiconductor de diodo, dentro de una cápsula sólida de Epoxy, la cual actúa como bombillo cuando la corriente pasa a través de las terminales. Los mismos, para funcionar, necesitan un mínimo de 3 Volts.

Los colores que se comercializan habitualmente son el blanco, azul, rojo, verde & ámbar.




rincipio físico

    El fenómeno de emisión de luz está basado en la teoría de bandas, por la cual, una tensión externa aplicada a una unión p-n polarizada directamente, excita los electrones, de manera que son capaces de atravesar la banda de energía que separa las dos regiones.
Si la energía es suficiente los electrones escapan del material en forma de fotones.
Cada material semiconductor tiene unas determinadas características que y por tanto una longitud de onda de la luz emitida.
 
 
Material
Longitud de onda
Color
GaAs : Zn
9000 Å
Infrarrojo
GaAsP.4
6600 Å
Rojo
GaAsP.5
6100 Å
Ambar
GaAsP.85 : N
5900 Å
Amarillo
GaP : N
5600 Å
Verde
Tabla 1. Longitudes de onda de algunos
compuestos de Galio
A diferencia de la lámparas de incandescencia cuyo funcionamiento es por una determinada tensión, los Led funcionan por la corriente que los atraviesa. Su conexión a una fuente de tensión constante debe estar protegida por una resistencia limitadora, veremos más adelante algunos ejemplos.
 
 

Teoría de bandas

    En un átomo aislado los electrones pueden ocupar determinados niveles energéticos pero cuando los átomos se unen para formar un cristal, las interacciones entre ellos modifican su energía, de tal manera que cada nivel inicial se desdobla en numerosos niveles, que constituyen una banda, existiendo entre ellas huecos, llamados bandas energéticas prohibidas, que sólo pueden salvar los electrones en caso de que se les comunique la energía suficiente. (figura 1) En los aislantes la banda inferior menos energética (banda de valencia) está completa con los e- más internos de los átomos, pero la superior (banda de conducción) está vacía y separada por una banda prohibida muy ancha (~ 10 eV), imposible de atravesar por un e-. En el caso de los conductores las bandas de conducción y de valencia se encuentran superpuestas, por lo que cualquier aporte de energía es suficiente para producir un desplazamiento de los electrones.
Entre ambos casos se encuentran los semiconductores, cuya estructura de bandas es muy semejante a los aislantes, pero con la diferencia de que la anchura de la banda prohibida es bastante pequeña. Los semiconductores son, por lo tanto, aislantes en condiciones normales, pero una elevación de temperatura proporciona la suficiente energía a los electrones para que, saltando la banda prohibida, pasen a la de conducción, dejando en la banda de valencia el hueco correspondiente. (figura 2)

En el caso de los diodos Led los electrones consiguen saltar fuera de la estructura en forma de radiación que percibimos como luz (fotones).
 
 

Composición de los Leds

  • Led Rojo
    Formado por GaP consiste en una unión p-n obtenida por el método de crecimiento epitaxial del cristal en su fase líquida, en un substrato.
La fuente luminosa está formada por una capa de cristal p junto con un complejo de ZnO, cuya máxima concentración está limitada, por lo que su luminosidad se satura a altas densidades de corriente. Este tipo de Led funciona con baja densidades de corriente ofreciendo una buena luminosidad, utilizándose como dispositivo de visualización en equipos portátiles.
El constituido por GaAsP consiste en una capa p obtenida por difusión de Zn durante el crecimiento de un cristal n de GaAsP, formado en un substrato de GaAs, por el método de crecimiento epitaxial en fase gaseosa.
Actualmente se emplea los Led de GaAlAs debido a su mayor luminosidad.
El máximo de radiación se halla en la longitud de onda 660 nm. (figura 3)
 

  • Led anaranjado y amarillo
    Están compuestos por GaAsP al igual que sus hermanos los rojos pero en este caso para conseguir luz anaranjada y amarilla así como luz de longitud de onda más pequeña, lo que hacemos es ampliar el ancho de la “banda prohibida” mediante el aumento de fósforo en el semiconductor.
Su fabricación es la misma que se utiliza para los diodos rojos, por crecimiento epitaxial del cristal en fase gaseosa, la formación de la unión p-n se realiza por difusión de Zn.
Como novedad importante en estos Leds se mezcla el área emisora con una trampa isoelectrónica de nitrógeno con el fin de mejorar el rendimiento
 
  • Led Verde
    El Led verde está compuesto por GaP. Se utiliza el método de crecimiento epitaxial del cristal en fase líquida para formar la unión p-n.
Al igual que los Leds amarillos, también se utiliza una trampa isoelectrónica de nitrógeno para mejorar el rendimiento. Debido a que este tipo de Led posee una baja probabilidad de transición fotónica, es importante mejorar la cristalinidad de la capa n.  La disminución de impurezas a larga la vida de los portadores, mejorando la cristalinidad.
Su máxima emisión se consigue en la longitud de onda 555 nm
 
 

Criterios de elección


        1. Dimensiones y color del diodo

Actualmente los Leds tienen diferentes tamaños, formas y colores. Tenemos Leds redondos, cuadrados, rectangulares, triangulares y con diversas formas.
Los colores básicos son rojo, verde y azul, aunque podemos encontrarlos naranjas, amarillos incluso hay un Led de luz blanca.
Las dimensiones en los Led redondos son 3mm, 5mm, 10mm y uno gigante de 20mm. Los de formas poliédricas suelen tener unas dimensiones aproximadas de 5x5mm.

        2. Ángulo de vista
Esta característica es importante, pues de ella depende el modo de observación del Led, es decir, el empleo práctico de aparato realizado.
Cuando el Led es puntual la emisión de luz sigue la ley de Lambert, permite tener un ángulo de vista relativamente grande y el punto luminoso se ve bajo todos los ángulos. (figura 4)

        3. Luninosidad
La intensidad luminosa en el eje y el brillo están intensamente relacionados. Tanto si el Led es puntual o difusor, el brillo es proporcional a la superficie de emisión.
Si el Led es puntual, el punto será más brillante, al ser una superficie demasiado pequeña. En uno difusor la intensidad en el eje es superior al modelo puntual.

        4. Consumo
El consumo depende mucho del tipo de Led que elijamos:
 

Color
Luminosidad
Consumo
Longitud onda
Diámetro
Rojo
1,25 mcd
10 mA
660 nm
3 y 5 mm
Verde, amarillo y naranja
8 mcd
10 mA

3 y 5 mm
Rojo (alta luminosidad)
80 mcd
10 mA
625 nm
5 mm
Verde (alta luminosidad)
50 mcd
10 mA
565 nm
5 mm
Hiper Rojo
3500 mcd
20 mA
660 nm
5 mm
Hiper Rojo
1600 mcd
20 mA
660 nm
5 mm
Hiper Verde
300 mcd
20 mA
565 nm
5 mm
Azul difuso
1 mcd 60º

470
5 mm
Rojo y verde
40 mcd
20 mA

10 mm
Tabla 2. Características de los Leds.


Estructura de un Led


    Los Led están formados por el material semiconductor que está envuelto en un plástico traslúcido o transparente según los modelos. En la figura podemos observar la distribución interna.
El electrodo interno de menor tamaño es el ánodo y el de mayor tamaño es el cátodo
Los primeros Leds se diseñaron para permitir el paso de la máxima cantidad de luz en dirección perpendicular a la superficie de montaje, más tarde se diseñaron para difundir la luz sobre un área más amplia gracias al aumento de la producción de luz por los Leds. (figura 5)
 
 

Algunas consideraciones


    Si la corriente aplicada es suficiente para que entre en conducción el diodo emitirá una cierta cantidad de luz que dependerá de la cantidad de corriente y la temperatura del Led.

La luminosidad aumentará según aumentemos la intensidad pero habrá que tener en cuenta la máxima intensidad que soporta el Led.
Antes de insertar un diodo en un montaje tendremos que tener el color del diodo para saber la caída de tensión parámetro necesario para los cálculos posteriores:
 

Color Caída de tensión ( VLED ) V Intensidad máxima ( ILED ) mA Intensidad media ( ILED )mA
Rojo
1.6
20
5 – 10
Verde
2.4
20
5 – 10
Amarillo
2.4
20
5 – 10
Naranja
1.7
20
5 – 10
Tabla 3. Caída de tensión e intensidad.


Circuito básico en continua


    La resistencia de limitación de la figura 6 puede calcularse a partir de la fórmula:

        V - Vled
R = ------------
     I
Si expresamos V en voltios e I en miliamperios el valor de la resistencia vendrá directamente expresado en kiloohmios.
También hay que tener en cuenta el calor disipado por en la resistencia, se calcula por la Ley de Joule. (figura 6)
 
 

Ley de Joule:

Potencia = I2 R
Donde I es la intensidad que atravesará al diodo y R la resistencia calculada en el apartado anterior.
 
 

Asociación de Leds

 
  • Serie
    Los diodos se pueden conectar en serie siempre que la suma de las caídas de tensión sea menor que la tensión de alimentación.
La fórmula a utilizar para el cálculo de la resistencia limitadora es :
          V - NVled
R = ---------------
      I
Donde N es el número de Leds conectados en serie.
Ver figura 7 para su interconexión.
 
  • Paralelo

     Para conectar varios Leds en paralelo solo tendremos que calcular el valor para un Leds y luego los ponemos como en la (figura 8).
En este caso habrá que tener cuidado con la intensidad de la fuente de alimentación que deberá ser superior a la suma de todos los Leds.
 

Ejemplo
Supongamos que la tensión de alimentación es de 12 voltios y vamos a utilizar un diodo Led de color rojo por el que circulará una corriente de 5 mA.
La resistencia limitadora será:

12 - 1,3
          R = --------- = 2,14 K
 5
Utilizaremos un resistencia normalizada (ver lista normalizada) de valor 2K2, con esta resistencia la intensidad real que circulará es de 4,86 mA. Valor lo más próximo al teórico.
El cálculo de la potencia lo vamos a realizar con la Ley de joule con lo que resultado queda P = 0.055 W, es decir, 55 mW; por tanto, basta con utilizar una resistencia de ¼  de vatio (250 mW) de 2K2 en serie con el diodo Led.
 
 

Circuito en alterna


    Si queremos conectar un Led a un circuito en alterna tendremos que tener en cuenta que en la corriente alterna existen tensiones positivas y negativas que se van alternado en una duración que será la mitad de la frecuencia, este punto es importante debido a que los diodo tienen una tensión de funcionamiento en polarización directa y otra en la inversa y podremos sobrepasarla para no destruir la unión semiconductora.
Para ello tenemos dos opciones:

        1ª Solución
    Consiste en colocar un diodo en oposición al Led, de forma que cuando no conduzca el Led conduzca el diodo, y ala inversa, lo que supone una caída de tensión de 0,7 voltios en el diodo, no superando los 3 voltios de ruptura del Led.
Con esto evitamos la destrucción cuando está polarizado inversamente pero tendremos que limitar la tensión y eso lo podremos conseguir con una resistencia en serie que calcularemos con la fórmula que utilizamos en el apartado Circuito básico en continua.
La potencia podremos calcularla con la Ley de Joule (figura 9)
 

Vamos a calcular un pequeño ejemplo práctico:
Sea un diodo Led con una caída de tensión de 1,2 voltios y un intensidad máxima de 20 mA, que se desea conectar a una tensión alterna de 220 voltios.

                                               220 - Vdl1                                               220 - 1,2
                                       R= -----------------                                     R = -------------- » 22 KW
                                                    Idl1                                                          10
La potencia de

R1 = VR1 x Il1 = (220 -1,2) x 10 » 3W
Un inconveniente de esta solución es que la resistencia será muy voluminosa al tener una potencia considerable.
 

        2ª Solución
    Para evitar poner un resistencia de 3W podremos colocar un condensador que se comportará como un resistencia al estar frente a una tensión alterna.
Al igual que en el circuito anterior tendremos que limitar la intensidad del circuito, como ejemplo vamos a utilizar los datos anteriores.
En este caso Rs nos sirve para limitar la intensidad cuando el condensador está descargado ya que se produciría un pico considerable que no soportaría el Led, como valor máximo de pico que puede soportar el Led tenemos:
Ipico = 220 / 1 » 220 mA.
Por tanto el valor de la resistencia será:

                                                220  V
                                    RS = ------------ = 1 K                    VRS = 1K x 10 mA = 10V
                                               220 mA

                                                                                                     RS = 1KW - 1/4 W
Para calcular el valor del condensador se tendrá en cuenta que la tensión en el condensador está desfasada 90º con respecto a la tensión en la resistencias y en el diodo así que aplicando Pitágoras (ver la figura) tendremos que:
VC = ( 2202 - (VR + VLED)2 )1/2 = ( 2202 - (11,2)2 )1/2» 219,7 V
Siendo la intensidad del condensador Ic = 10 mA.
La resistencia capacitiva será:
Tomando un valor normalizado Xc = 22 KW

                                                                                  219,7 V
                                                                     XC = --------------- = 21,9 KW
                                                                                  10 mA

La capacidad del condensador será:
 

                                                                      1                         1
                                                     C = ---------------- = ----------------------- » 150 nF
                                                               2Pf x XC       100P x 22.103

Podemos ver que con esta solución reducimos el valor de la resistencia sustituyéndola por un condensador de 150 nF que tenga una tensión de trabajo de 400V al ser los 220 eficaces.
Como ventajas tenemos que no es tan voluminoso y al haber sustituido la resistencia de 3W no tendremos una disipación de calor tan grande.(figura 10)


¿Qué es un diodo LED?

Si alguna vez ha visto, unas pequeñas luces de diferentes colores que se encienden y apagan, en algún circuito electrónico, ha visto los diodo LED en funcionamiento. Ver Símbolo del diodo LED
Simbolo del diodo LED (diodo emisor de luz) - Electrónica UnicromLeds de varias formas y colores - Electrónica Unicrom
El LED es un tipo especial de diodo, que trabaja como un diodo común, pero que al ser atravesado por la corriente eléctrica, emite luz. Existen diodos LED de varios colores que dependen del material con el cual fueron construidos. Hay de color rojo, verdeamarillo, ámbar, infrarrojo, entre otros. Ver la imagen (original de Wikipedia)

Eléctricamente el  diodo LED se comporta igual que un diodo de silicio o germanio.
Si se pasa una corriente a través del diodo semiconductor, se inyectan electrones y huecos en las regiones P y N, respectivamente.
Dependiendo de la magnitud de la corriente, hay recombinación de los portadores de carga (electrones y huecos). Hay un tipo de recombinaciones que se llaman recombinaciones radiantes (aquí la emisión de luz).
Tabla de material de fabricación, longitud de onda y color de diferentes tipos de LEDs  - Electrónica Unicrom
La relación entre las recombinaciones radiantes y el total de recombinaciones depende del materialsemiconductor utilizado (GaAs, GaAsP,y GaP). Dependiendo del material de que está hecho elLED, será la emisión de la longitud de onda y por ende el color. Ver la tabla más abajo
Debe de escogerse bien la corriente que atraviesa el LED para obtener una buena intensidad luminosa y evitar que este se pueda dañar.
El LED tiene un voltaje de operación que va de 1.5 V a 2.2 voltios aproximadamente y la gama de corrientes que debe circular por él está entre los 10 y 20 miliamperios (mA) en los diodos de color rojo y de entre los 20 y 40 miliamperios (mA) para los otros LEDs.
Los diodos LED tiene enormes ventajas sobre las lámparasindicadoras comunes, como su bajo consumo de energía, su mantenimiento casi nulo y con una vida aproximada de 100,000 horas.
El diodo LED debe ser protegido. Una pequeña cantidad de corriente en sentido inverso no lo dañará, pero si hay picos inesperados puede dañarse. Una forma de protegerlo es colocar en paralelo con el diodo LED pero apuntando en sentido opuesto un diodo de silicio común.
Aplicaciones tiene el diodo LED. Se utiliza ampliamente en aplicaciones visuales, como indicadoras de cierta situación específica de funcionamiento.
Ejemplos
- Se utilizan para desplegar contadores
- Para indicar la polaridad de una fuente de alimentación decorriente continua.
- Para indicar la actividad de una fuente de alimentación de corriente alterna.
- En dispositivos de alarma, etc.
Las desventajas del diodo LED son que su potencia de iluminación es tan baja, que su luz es invisible bajo una fuente de luz brillante y que su ángulo de visibilidad está entre los 30° y 60°. Este último problema se corrige con cubiertas difusoras de luz.

Lámpara LED

Tubo LED de 17 vatios = tubo fluorescente de 45W
Lámparas LED E27 = lámparas incandescentes
Una lámpara de led 1 es una lámpara de estado sólido que usa ledes 2 (Light-Emitting Diode, Diodos Emisores de Luz) como fuente luminosa. Debido a que la luz capaz de emitir un led no es muy intensa, para alcanzar la intensidad luminosa similar a las otras lámparas existentes como las incandescentes o las fluorescentes compactas las lámparas LED están compuestas por agrupaciones de ledes, en mayor o menor número, según la intensidad luminosa deseada.
Actualmente las lámparas de led se pueden usar para cualquier aplicación comercial, desde el alumbrado decorativo hasta el de viales y jardines, presentado ciertas ventajas, entre las que destacan su considerable ahorro energético, arranque instantáneo, aguante a los encendidos y apagados continuos y su mayor vida útil, pero también con ciertos inconvenientes como su elevado costo inicial.
Los diodos funcionan con energía eléctrica de corriente continua (CC), de modo que las lámparas de led deben incluir circuitos internos para operar desde el voltaje CAestándar. Los ledes se dañan a altas temperaturas, por lo que las lámparas de led tienen elementos de gestión del calor, tales como disipadores y aletas de refrigeración. Las lámparas de led tienen una vida útil larga y una gran eficiencia energética, pero los costos iniciales son más altos que los de las lámparas fluorescentes.

Descripción de la tecnología[editar · editar código]

Luz de falso techo de LED.
La iluminación de propósito general necesita luz blanca. Los ledes emiten luz en una banda de longitudes de onda muy estrecha, fuertemente coloreada. El color es característico de la banda prohibida de energía de un material semiconductor usado para fabricar el led. Para emitir luz blanca es preciso combinar ledes de luz roja, verde y azul, o usar fósforo para convertir parte de la luz a otros colores.
El primer método (LED RGB), usa múltiples chips de ledes, cada uno emitiendo una longitud de onda diferente en las proximidades, para formar el amplio espectro de luz blanca. La ventaja de este método es que la intensidad de cada led puede ser ajustada para "afinar" el carácter de la luz emitida. La mayor desventaja es su alto costo de producción.
El segundo método, led de fósforo convertido (pcLED), usa un led de corta longitud de onda (usualmente azul o ultravioleta) en combinación con el fósforo que absorbe una porción de la luz azul y emite un espectro más amplio de luz blanca (el mecanismo es similar a la forma de una lámpara fluorescente que emite luz blanca de un sistema de iluminación UV de fósforo). La mayor ventaja aquí es el costo de producción bajo, alto IRC (índice de reproducción cromática), mientras la desventaja es la incapacidad para cambiar dinámicamente el carácter de la luz y el hecho de que la conversión de fósforo reduce la eficiencia del dispositivo. El bajo costo y el desempeño adecuado lo hacen la tecnología más utilizada para la iluminación general hoy en día.
Un solo led es un dispositivo de estado sólido de baja tensión (voltaje) y no puede funcionar directamente en una corriente alterna estándar sin algún tipo de circuito para controlar el voltaje aplicado y el flujo de corriente a través de la lámpara. Una serie de diodos y resistores (resistencias) podrían ser usadas para controlar la polaridad del voltaje y limitar la corriente, pero esto es ineficiente, ya que la mayor parte de la tensión aplicada se desperdicia en forma de calor en la resistencia. Una cadena única de ledes en serie podrían minimizar la pérdida de la caída de tensión, pero la falla de un sólo led podría extinguir toda la cadena. El uso de cadenas en paralelo redundantes incrementa la fiabilidad, usándose comúnmente tres o más cadenas. Pueden ser útiles para la iluminación del hogar o en espacios de trabajo, un número de ledes deben ser colocados juntos en una lámpara para combinar sus efectos de iluminación. Esto es porque cada led emite solamente una fracción de la luz de las fuentes de luz tradicionales.
Cuando se utiliza el método de la mezcla de colores, puede ser difícil lograr una distribución de color uniforme, mientras que la adaptación de ledes blancos no es crítica para el equilibrio de color. Además, la degradación de ledes diferentes en varios momentos en una lámpara de colores combinados puede producir una salida de color uniforme. Las lámparas de LED usualmente consisten en grupos de ledes en una cubierta con dispositivos electrónicos, un disipador y óptica.
No se han descrito las temperaturas óptimas ambientales de funcionamiento, sin embargo, se ha demostrado que pueden trabajar entre -40º y +50º.

Galería[editar · editar código]

Lámparas LED
Lámpara LED con rosca E27, intercambiable con las lámparas incandescentes  
Vista superior de una lámpara Philips 12.5 W LED, intercambiable con una lámpara incandescente de 60 vatios  
Foco LED con 60 diodos individuales para enchufar directamente a la red eléctrica  
Tubos de LED de diferentes longitudes, intercambiables con las lámparas fluorescentes  
Lámpara LED con base e27, destinada a sustituir una lámpara halógeno con reflector  

Visión general

Los ledes se usan como indicadores en muchos dispositivos y en iluminación. Los primeros ledes emitían luz roja de baja intensidad, pero los dispositivos actuales emiten luz de alto brillo en el espectro infrarrojo, visible y ultravioleta.
Debido a sus altas frecuencias de operación son también útiles en tecnologías avanzadas de comunicaciones. Los ledes infrarrojos también se usan en unidades de control remoto de muchos productos comerciales incluyendo televisores e infinidad de aplicaciones de hogar y consumo doméstico.

Características

Formas de determinar la polaridad de un LED de inserción

Existen tres formas principales de conocer la polaridad de un led:
  1. La pata más larga siempre va a ser el ánodo
  2. En el lado del cátodo, la base del led tiene un borde plano
  3. Dentro del led, la plaqueta indica el ánodo. Se puede reconocer porque es más pequeña que el yunque, que indica el cátodo

Ventajas y desventajas

Ventajas
Los ledes presentan muchas ventajas sobre las fuentes de luz incandescente y fluorescente, principalmente por el bajo consumo de energía, mayor tiempo de vida, tamaño reducido, durabilidad, resistencia a las vibraciones, reducen la emisión de calor, no contienen mercurio (el cual al exponerse en el medio ambiente es altamente venenoso), en comparación con la tecnología fluorescente, no crean campos magnéticos altos como la tecnología de inducción magnética, con los cuales se crea mayor radiación residual hacia el ser humano; cuentan con mejor índice de producción cromática que otros tipos de luminarias, reducen ruidos en las líneas eléctricas, son especiales para utilizarse con sistemas fotovoltaicos (paneles solares) en comparación con cualquier otra tecnología actual; no les afecta el encendido intermitente (es decir pueden funcionar como luces estroboscópicas) y esto no reduce su vida promedio, son especiales para sistemas antiexplosión ya que cuentan con un material resistente, y en la mayoría de los colores (a excepción de los ledes azules), cuentan con un alto nivel de fiabilidad y duración.
Tiempo de encendido
Los ledes tienen la ventaja de poseer un tiempo de encendido muy corto (aproximadamente en un cuarto de segundo) en comparación con las luminarias de alta potencia como lo son las luminarias de alta intensidad de vapor de sodio, aditivos metálicos, halogenuro o halogenadas y demás sistemas con tecnología incandescente.
Variedad de colores
Ledes1 de distintos colores.
Ledes1 azules.
La excelente variedad de colores que producen los ledes ha permitido el desarrollo de nuevas pantallas electrónicas de texto monocromáticas, bicolores, tricolores y RGB (pantallas a todo color) con la habilidad de reproducción de vídeo para fines publicitarios, informativos o tipo indicadores.
Desventajas
Según un estudio reciente parece ser que los ledes que emiten una frecuencia de luz muy azul, pueden ser dañinos para la vista y provocar contaminación lumínica.2 Los ledes con la potencia suficiente para la iluminación de interiores son relativamente caros y requieren una corriente eléctrica más precisa, por su sistema electrónico para funcionar con voltaje alterno, y requieren de disipadores de calor cada vez más eficientes en comparación con las bombillas fluorescentes de potencia equiparable.

Funcionamiento

Cuando un led se encuentra en polarización directa, los electrones pueden recombinarse con los huecos en el dispositivo, liberando energía en forma de fotones. Este efecto es llamado electroluminiscencia y el color de la luz (correspondiente a la energía del fotón) se determina a partir de la banda de energía del semiconductor. Por lo general, el área de un led es muy pequeña (menor a 1 mm2), y se pueden usar componentes ópticos integrados para formar su patrón de radiación.

Historia

Desarrollo

Oleg Vladimírovich Lósev (1903-1942) desarrolló el primer led en 1927.3

Invención

Nick Holonyak inventó el led en 1962 mientras trabajaba como científico asesor en un laboratorio de General Electric en Syracuse (Nueva York)

Años sesenta

Ledes rojos, verdes y amarillos

En los años sesenta el led se comenzó a producir industrialmente. Solo se podían construir de color rojo, verde y amarillo, con poca intensidad de luz y se limitaba su utilización a mandos a distancia (controles remotos) y electrodomésticos, como indicadores para señalar el encendido y apagado.

Años noventa

Ledes ultravioletas y azules

A finales de los años noventa se inventaron los ledes ultravioletas y azules.

Ledes blancos

Gracias a la invención de los ledes azules es que se dio el paso al desarrollo del led blanco, que es un led de luz azul con recubrimiento de fósforo que produce una luz amarilla. La mezcla del azul y el amarillo (colores complementarios en el espectro RGB) produce una luz blanquecina denominada «luz de luna» que consigue alta luminosidad (7 lúmenes unidad), con lo cual se ha logrado ampliar su utilización en otros sistemas de iluminación.

Visión detallada

Aplicaciones

Pantalla de ledes en el Estadio de los Arkansas Razorbacks.
Los ledes en la actualidad se pueden acondicionar o incorporarse en un porcentaje mayor al 90 % a todas las tecnologías de iluminación actuales, casas, oficinas, industrias, edificios, restaurantes, arenas, teatros, plazas comerciales, gasolineras, calles y avenidas, estadios (en algunos casos por las dimensiones del estadio no es posible porque quedarían espacios obscuros), conciertos, discotecas, casinos, hoteles, carreteras, luces de tráfico o de semáforos, señalizaciones viales, universidades, colegios, escuelas, estacionamientos, aeropuertos, sistemas híbridos, celulares, pantallas de casa o domésticas, monitores, cámaras de vigilancia, supermercados, en transportes (bicicletas, motocicletas, automóviles, camiones tráiler, etc.), en linternas de mano, para crear pantallas electrónicas de led (tanto informativas como publicitarias) y para cuestiones arquitectónicas especiales o de arte culturales. Todas estas aplicaciones se dan gracias a su diseño compacto.
La pantalla en Freemont Street en Las Vegas es la más grande.
Ledes aplicados al automovilismo, vehículo con luces diurnas de ledes.
Los diodos infrarrojos (IRED) se emplean desde mediados del siglo XX en mandos a distancia de televisores, habiéndose generalizado su uso en otros electrodomésticos como equipos de aire acondicionado, equipos de música, etc., y, en general, para aplicaciones de control remoto así como en dispositivos detectores, además de ser utilizados para transmitir datos entre dispositivos electrónicos como en redes de computadoras y dispositivos como teléfonos móviles, computadoras de mano, aunque esta tecnología de transmisión de datos ha dado paso al bluetooth en los últimos años, quedando casi obsoleta.
Los ledes se emplean con profusión en todo tipo de indicadores de estado (encendido/apagado) en dispositivos de señalización (de tránsito, de emergencia, etc.) y en paneles informativos (el mayor del mundo, del NASDAQ, tiene 36,6 metros de altura y está en Times Square, Manhattan). También se emplean en el alumbrado de pantallas de cristal líquido de teléfonos móviles, calculadoras, agendas electrónicas, etc., así como en bicicletas y usos similares. Existen además impresoras con ledes.
El uso de ledes en el ámbito de la iluminación (incluyendo la señalización de tráfico) es moderado y es previsible que se incremente en el futuro, ya que sus prestaciones son superiores a las de la lámpara incandescente y la lámpara fluorescente, desde diversos puntos de vista. La iluminación con ledes presenta indudables ventajas: fiabilidad, mayor eficiencia energética, mayor resistencia a las vibraciones, mejor visión ante diversas circunstancias de iluminación, menor disipación de energía, menor riesgo para el medio ambiente, capacidad para operar de forma intermitente de modo continuo, respuesta rápida, etc. Asimismo, con ledes se pueden producir luces de diferentes colores con un rendimiento luminoso elevado, a diferencia de muchas de las lámparas utilizadas hasta ahora que tienen filtros para lograr un efecto similar (lo que supone una reducción de su eficiencia energética). Cabe destacar también que diversas pruebas realizadas por importantes empresas y organismos han concluido que el ahorro energético varía entre el 70 y el 80 % respecto a la iluminación tradicional que se utiliza hasta ahora.4 Todo ello pone de manifiesto las numerosas ventajas que los ledes ofrecen en relación al alumbrado público.
Los ledes de luz blanca son uno de los desarrollos más recientes y pueden considerarse como un intento muy bien fundamentado para sustituir los focos o bombillas actuales (lámparas incandescentes) por dispositivos mucho más ventajosos. En la actualidad se dispone de tecnología que consume el 92 % menos que las lámparas incandescentes de uso doméstico común y el 30 % menos que la mayoría de las lámparas fluorescentes; además, estos ledes pueden durar hasta 20 años y suponer el 200 % menos de costos totales de propiedad si se comparan con las lámparas o tubos fluorescentes convencionales.5 Estas características convierten a los ledes de luz blanca en una alternativa muy prometedora para la iluminación.
También se utilizan en la emisión de señales de luz que se trasmiten a través de fibra óptica. Sin embargo esta aplicación está en desuso ya que actualmente se opta por tecnología láser que focaliza más las señales de luz y permite un mayor alcance de la misma utilizando el mismo cable. Sin embargo en los inicios de la fibra óptica eran usados por su escaso coste, ya que suponían una gran ventaja frente al coaxial (aún sin focalizar la emisión de luz).
Pantalla de ledes: pantalla muy brillante formada por filas de ledes verdes, azules y rojos ordenados según la arquitectura RGB, controlados individualmente para formar imágenes vivas muy brillantes, con un altísimo nivel de contraste. Entre sus principales ventajas, frente a otras pantallas, se encuentran: buen soporte de color, brillo extremadamente alto (lo que le da la capacidad de ser completamente visible bajo la luz del sol), altísima resistencia a impactos.

Tecnología de fabricación

En corriente continua (CC), todos los diodos emiten cierta cantidad de radiación cuando los pares electrón-hueco se recombinan; es decir, cuando los electrones caen desde la banda de conducción (de mayor energía) a la banda de valencia (de menor energía) emitiendo fotones en el proceso. Indudablemente, por ende, su color dependerá de la altura de la banda prohibida (diferencias de energía entre las bandas de conducción y valencia), es decir, de los materiales empleados. Los diodos convencionales, de silicio o germanio, emiten radiación infrarroja muy alejada del espectro visible. Sin embargo, con materiales especiales pueden conseguirse longitudes de onda visibles. Los ledes e IRED (diodos infrarrojos), además, tienen geometrías especiales para evitar que la radiación emitida sea reabsorbida por el material circundante del propio diodo, lo que sucede en los convencionales.
Diodos LED.svg
Compuestos empleados en la construcción de ledes
Compuesto Color Long. de onda
arseniuro de galio (GaAs) Infrarrojo 940 nm
arseniuro de galio y aluminio (AlGaAs) rojo e infrarrojo 890 nm
arseniuro fosfuro de galio (GaAsP) rojo, anaranjado y amarillo 630 nm
fosfuro de galio (GaP) verde 555 nm
nitruro de galio (GaN) verde 525 nm
seleniuro de cinc (ZnSe) azul
nitruro de galio e indio (InGaN) azul 450 nm
carburo de silicio (SiC) azul 480 nm
diamante (C) ultravioleta
silicio (Si) en desarrollo
Los primeros ledes construidos fueron los diodos infrarrojos y de color rojo, permitiendo el desarrollo tecnológico posterior la construcción de diodos para longitudes de onda cada vez menores. En particular, los diodos azules fueron desarrollados a finales de los años noventa por Shuji Nakamura, añadiéndose a los rojos y verdes desarrollados con anterioridad, lo que permitió —por combinación de los mismos— la obtención de luz blanca. El diodo de seleniuro de cinc puede emitir también luz blanca si se mezcla la luz azul que emite con la roja y verde creada por fotoluminiscencia. La más reciente innovación en el ámbito de la tecnología led son los ledes ultravioleta, que se han empleado con éxito en la producción de luz negra para iluminar materiales fluorescentes. Tanto los ledes azules como los ultravioletas son caros respecto a los más comunes (rojo, verde, amarillo e infrarrojo), siendo por ello menos empleados en las aplicaciones comerciales.
Los ledes comerciales típicos están diseñados para potencias del orden de los 30 a 60 mW. En torno a 1999 se introdujeron en el mercado diodos capaces de trabajar con potencias de 1 vatio para uso continuo; estos diodos tienen matrices semiconductoras de dimensiones mucho mayores para poder soportar tales potencias e incorporan aletas metálicas para disipar el calor (véase convección) generado por el efecto Joule.
Hoy en día se están desarrollando y empezando a comercializar ledes con prestaciones muy superiores a las de hace unos años y con un futuro prometedor en diversos campos, incluso en aplicaciones generales de iluminación. Como ejemplo, se puede destacar que Nichia Corporation ha desarrollado ledes de luz blanca con una eficiencia luminosa de 150 lm/W utilizando para ello una corriente de polarización directa de 20 miliamperios (mA). Esta eficiencia, comparada con otras fuentes de luz solamente en términos de rendimiento, es aproximadamente 1,7 veces superior a la de la lámpara fluorescente con prestaciones de color altas (90 lm/W) y aproximadamente 11,5 veces la de una lámpara incandescente (13 lm/W). Su eficiencia es incluso más alta que la de la lámpara de vapor de sodio de alta presión (132 lm/W), que está considerada como una de las fuentes de luz más eficientes.6

Explicación detallada de funcionamiento

LED, 5mm, green (int).svg
A Ánodo
B Cátodo
1 Lente/encapsulado epóxico (capsula plástica)
2 Contacto metálico (hilo conductor)
3 Cavidad reflectora (copa reflectora)
4 Terminación del semiconductor
5 Yunque
6 Plaqueta
7
8 Borde plano
El funcionamiento normal consiste en que, en los materiales conductores, un electrón, al pasar de la banda de conducción a la de valencia, pierde energía; esta energía perdida se manifiesta en forma de un fotón desprendido, con una amplitud, una dirección y una fase aleatoria. El que esa energía perdida, cuando pasa un electrón de la banda de conducción a la de valencia, se manifieste como un fotón desprendido o como otra forma de energía (calor por ejemplo) depende principalmente del tipo de material semiconductor. Cuando un diodo semiconductor se polariza directamente, los huecos de la zona positiva se mueven hacia la zona negativa y los electrones se mueven de la zona negativa hacia la zona positiva; ambos desplazamientos de cargas constituyen la corriente que circula por el diodo.
Si los electrones y huecos están en la misma región, pueden recombinarse, es decir, los electrones pueden pasar a "ocupar" los huecos "cayendo" desde un nivel energético superior a otro inferior más estable. Este proceso emite con frecuencia un fotón en semiconductores de banda prohibida directa [direct bandgap]) con la energía correspondiente a su banda prohibida (véase semiconductor). Esto no quiere decir que en los demás semiconductores (semiconductores de banda prohibida indirecta [indirect bandgap]) no se produzcan emisiones en forma de fotones; sin embargo, estas emisiones son mucho más probables en los semiconductores de banda prohibida directa (como el nitruro de galio) que en los semiconductores de banda prohibida indirecta (como el silicio).
La emisión espontánea, por tanto, no se produce de forma notable en todos los diodos y solo es visible en diodos como los ledes de luz visible, que tienen una disposición constructiva especial con el propósito de evitar que la radiación sea reabsorbida por el material circundante, y una energía de la banda prohibida coincidente con la correspondiente al espectro visible. En otros diodos, la energía se libera principalmente en forma de calor, radiación infrarroja o radiación ultravioleta. En el caso de que el diodo libere la energía en forma de radiación ultravioleta, se puede conseguir aprovechar esta radiación para producir radiación visible mediante sustancias fluorescentes o fosforescentes que absorban la radiación ultravioleta emitida por el diodo y posteriormente emitan luz visible.
El dispositivo semiconductor está comúnmente encapsulado en una cubierta de plástico de mayor resistencia que las de vidrio que usualmente se emplean en las lámparas incandescentes. Aunque el plástico puede estar coloreado, es solo por razones estéticas, ya que ello no influye en el color de la luz emitida. Usualmente un led es una fuente de luz compuesta con diferentes partes, razón por la cual el patrón de intensidad de la luz emitida puede ser bastante complejo.
Para obtener buena intensidad luminosa debe escogerse bien la corriente que atraviesa el led. Para ello hay que tener en cuenta que el voltaje de operación va desde 1,8 hasta 3,8 voltios aproximadamente (lo que está relacionado con el material de fabricación y el color de la luz que emite) y la gama de intensidades que debe circular por él varía según su aplicación. Los valores típicos de corriente directa de polarización de un led corriente están comprendidos entre los 10 y los 40 mA. En general, los ledes suelen tener mejor eficiencia cuanto menor es la corriente que circula por ellos, con lo cual, en su operación de forma optimizada, se suele buscar un compromiso entre la intensidad luminosa que producen (mayor cuanto más grande es la intensidad que circula por ellos) y la eficiencia (mayor cuanto menor es la intensidad que circula por ellos). El primer led que emitía en el espectro visible fue desarrollado por el ingeniero de General Electric Nick Holonyak en 1962.

Diagramas

Circuito básico de polarización directa de un solo led.
Circuito básico para polarizar varios ledes de manera directa.
Para conectar ledes de modo que iluminen de forma continua, deben estar polarizados directamente, es decir, con el polo positivo de la fuente de alimentación conectado al ánodo y el polo negativo conectado al cátodo. Además, la fuente de alimentación debe suministrarle una tensión o diferencia de potencial superior a su tensión umbral. Por otro lado, se debe garantizar que la corriente que circula por ellos no exceda los límites admisibles, lo que dañaría irreversiblemente al led. (Esto se puede hacer de manera sencilla con una resistencia R en serie con los ledes). En las dos imágenes de la derecha pueden verse unos circuitos sencillos que muestran cómo polarizar directamente ledes.
La diferencia de potencial varía de acuerdo a las especificaciones relacionadas con el color y la potencia soportada.
En términos generales, pueden considerarse de forma aproximada los siguientes valores de diferencia de potencial:7
  • Rojo = 1,8 a 2,2 voltios.
  • Anaranjado = 2,1 a 2,2 voltios.
  • Amarillo = 2,1 a 2,4 voltios.
  • Verde = 2 a 3,5 voltios.
  • Azul = 3,5 a 3,8 voltios.
  • Blanco = 3,6 voltios.
Luego, mediante la ley de Ohm, puede calcularse la resistencia R adecuada para la tensión de la fuente Vfuente que utilicemos.  R = \frac {{V_{fuente}}-{(V_{d1} +V_{d2}+....)}}{I} El término I en la fórmula se refiere al valor de corriente para la intensidad luminosa que necesitamos. Lo común es de 10  miliamperios para ledes de baja luminosidad y 20 mA para ledes de alta luminosidad; un valor superior puede inutilizar el led o reducir de manera considerable su tiempo de vida.
Otros ledes de una mayor capacidad de corriente, conocidos como ledes de potencia (1 W, 3 W, 5 W, etc.), pueden ser usados a 150 mA, 350 mA, 750 mA o incluso a 3000 mA dependiendo de las características optoeléctricas dadas por el fabricante.
Cabe recordar que también pueden conectarse varios en serie, sumándose las diferencias de potencial en cada uno. También se pueden hacer configuraciones en paralelo, aunque este tipo de configuraciones no son muy recomendadas para diseños de circuitos con ledes eficientes.

Tecnologías relacionadas

OLED

El comienzo del siglo XXI ha visto aparecer los diodos OLED (ledes orgánicos), fabricados con materiales polímeros orgánicos semiconductores. Aunque la eficiencia lograda con estos dispositivos está lejos de la de los diodos inorgánicos, y son biodegradables, su fabricación promete ser considerablemente más barata que la de aquellos, siendo además posible depositar gran cantidad de diodos sobre cualquier superficie empleando técnicas de pintado para crear pantallas en color.
El OLED (organic light-emitting diode: ‘diodo orgánico de emisión de luz’) es un diodo basado en una capa electroluminiscente que está formada por una película de componentes orgánicos que reaccionan a un determinado estímulo eléctrico, generando y emitiendo luz por sí mismos.
No se puede hablar realmente de una tecnología OLED, sino más bien de tecnologías basadas en OLED, ya que son varias las que hay, dependiendo del soporte y finalidad a la que vayan destinados. Su aplicación es realmente amplia, mucho más que cualquier otra tecnología existente. Pero además, las tecnologías basadas en OLED no solo tienen una aplicación puramente como pantallas reproductoras de imagen, sino que su horizonte se amplía al campo de la iluminación, privacidad y otros múltiples usos que se le pueda dar.
Las ventajas de esta nueva tecnología son enormes, pero también tiene una serie de inconvenientes, aunque la mayoría de estos son totalmente circunstanciales y desaparecerán, en unos casos, conforme se siga investigando en este campo, y en otros, conforme vaya aumentando su uso y producción.
Una solución tecnológica que pretende aprovechar las ventajas de la eficiencia alta de los ledes típicos (hechos con materiales inorgánicos principalmente) y los costes menores de los OLED (derivados del uso de materiales orgánicos) son los Sistemas de Iluminación Híbridos (Orgánicos/Inorgánicos) basados en diodos emisores de luz. Dos ejemplos de este tipo de solución tecnológica los está intentado comercializar la empresa Cyberlux con los nombres de HWL (Hybrid White Light: ‘luz blanca híbrida’) y HML (Hybrid Multicolor Light: ‘luz multicolor híbrida’), cuyo resultado puede producir sistemas de iluminación mucho más eficientes y con un coste menor que los actuales.8